

C8 : Analyse des performances des systèmes asservis C8-1 : Stabilité des systèmes asservis

Émilien DURIF

Lycée La Martinière Monplaisir Lyon Classe de MPSI 29 Avril 2025

Plan

- Intérêts et objectifs
 - Introduction
 - Classe et ordre d'une fonction de transfert
 - Exemple du cours
- Stabilité
 - Définition et propriétés
 - Critères de stabilité
 - Marge de stabilité
 - Application aux systèmes du premier et deuxième ordre

Plan

- Intérêts et objectifs
 - Introduction
 - Classe et ordre d'une fonction de transfert
 - Exemple du cours
- - Définition et propriétés
 - Critères de stabilité
 - Marge de stabilité
 - Application aux systèmes du premier et deuxième ordre

Émilien DURIE

Introduction : intérêts et objectifs

Précision et stabilité

- Ce chapitre permet d'énoncer les outils nécessaires à la caractérisation de la stabilité des systèmes linéaires continus et invariants asservis.
- Durant tout ce chapitre nous allons énoncer les principes de quantification de la stabilité d'un système modélisé par une fonction de transfert.

Introduction : intérêts et objectifs

Précision et stabilité

- Ce chapitre permet d'énoncer les outils nécessaires à la caractérisation de la stabilité des systèmes linéaires continus et invariants asservis.
- Durant tout ce chapitre nous allons énoncer les principes de quantification de la stabilité d'un système modélisé par une fonction de transfert.

Intérêts et objectifs Stabilité

Plan

- Intérêts et objectifs
 - Introduction
 - Classe et ordre d'une fonction de transfert
 - Exemple du cours
- Stabilité
 - Définition et propriétés
 - Critères de stabilité
 - Marge de stabilité
 - Application aux systèmes du premier et deuxième ordre

Classe et ordre d'une fonction de transfert

Soit une fonction de transfert en boucle ouverte (FTBO(p)) ou en boucle fermée (FTBF(p)) donnée par la fonction H(p):

$$H(p) = \frac{K}{p^{\alpha}} \frac{1 + c_1 \ p + \dots + c_m \ p^m}{1 + d_1 \ p + \dots + d_n \ p^n}.$$
 (1)

On appelle:

- zéros de la fonction de transfert, celles qui annulent son numérateur;
- pôles de la fonction de transfert, les valeurs de p qui annulent son dénominateur
- α (≥ 0), sa classe (pour une FTBO(p), il correspond directement au nombre d'intégrateurs purs dans la boucle ouverte):
- $n_0 = n + \alpha$ l'ordre du système qui correspond au nombre de pôles du système
- K, le gain de la fonction de transfert;

Classe et ordre d'une fonction de transfert

Soit une fonction de transfert en boucle ouverte (FTBO(p)) ou en boucle fermée (FTBF(p)) donnée par la fonction H(p):

$$H(p) = \frac{K}{p^{\alpha}} \frac{1 + c_1 \ p + \dots + c_m \ p^m}{1 + d_1 \ p + \dots + d_n \ p^n}.$$
 (1)

On appelle:

- zéros de la fonction de transfert, celles qui annulent son numérateur;
- pôles de la fonction de transfert, les valeurs de p qui annulent son dénominateur
- $\alpha \ (\geq 0)$, sa classe (pour une FTBO(p), il correspond directement au nombre d'intégrateurs purs dans la boucle ouverte):
- $n_0 = n + \alpha$ l'ordre du système qui correspond au nombre de pôles du système
- K le gain de la fonction de transfert :

Classe et ordre d'une fonction de transfert

Soit une fonction de transfert en boucle ouverte (FTBO(p)) ou en boucle fermée (FTBF(p)) donnée par la fonction H(p):

$$H(p) = \frac{K}{p^{\alpha}} \frac{1 + c_1 \ p + \dots + c_m \ p^m}{1 + d_1 \ p + \dots + d_n \ p^n}.$$
 (1)

On appelle :

- zéros de la fonction de transfert, celles qui annulent son numérateur;
- pôles de la fonction de transfert, les valeurs de p qui annulent son dénominateur;
- $\alpha \ (\geq 0)$, sa classe (pour une FTBO(p), il correspond directement au nombre d'intégrateurs purs dans la bourle ouverte):
- $\mathbf{o}_{n} = n + \alpha$ l'ordre du système qui correspond au nombre de pôles du système
- K le gain de la fonction de transfert :

Classe et ordre d'une fonction de transfert

Soit une fonction de transfert en boucle ouverte (FTBO(p)) ou en boucle fermée (FTBF(p)) donnée par la fonction H(p):

$$H(p) = \frac{K}{p^{\alpha}} \frac{1 + c_1 \ p + \dots + c_m \ p^m}{1 + d_1 \ p + \dots + d_n \ p^n}.$$
 (1)

On appelle :

- zéros de la fonction de transfert, celles qui annulent son numérateur;
- pôles de la fonction de transfert, les valeurs de p qui annulent son dénominateur;
- α (\geq 0), sa classe (pour une FTBO(p), il correspond directement au nombre d'intégrateurs purs dans la boucle ouverte);
- $n_0 = n + \alpha$ l'ordre du système qui correspond au nombre de pôles du système
- K le gain de la fonction de transfert :

Classe et ordre d'une fonction de transfert

Soit une fonction de transfert en boucle ouverte (FTBO(p)) ou en boucle fermée (FTBF(p)) donnée par la fonction H(p):

$$H(p) = \frac{K}{p^{\alpha}} \frac{1 + c_1 \ p + \dots + c_m \ p^m}{1 + d_1 \ p + \dots + d_n \ p^n}.$$
 (1)

On appelle :

- zéros de la fonction de transfert, celles qui annulent son numérateur;
- pôles de la fonction de transfert, les valeurs de p qui annulent son dénominateur;
- α (\geq 0), sa classe (pour une FTBO(p), il correspond directement au nombre d'intégrateurs purs dans la boucle ouverte);
- $n_o = n + \alpha$ l'ordre du système qui correspond au nombre de pôles du système ;

K le gain de la fonction de transfert

Classe et ordre d'une fonction de transfert

Soit une fonction de transfert en boucle ouverte (FTBO(p)) ou en boucle fermée (FTBF(p)) donnée par la fonction H(p):

$$H(p) = \frac{K}{p^{\alpha}} \frac{1 + c_1 \ p + \dots + c_m \ p^m}{1 + d_1 \ p + \dots + d_n \ p^n}.$$
 (1)

On appelle:

- zéros de la fonction de transfert, celles qui annulent son numérateur;
- pôles de la fonction de transfert, les valeurs de p qui annulent son dénominateur;
- α (\geq 0), sa classe (pour une FTBO(p), il correspond directement au nombre d'intégrateurs purs dans la boucle ouverte);
- $n_o = n + \alpha$ l'ordre du système qui correspond au nombre de pôles du système ;
- K, le gain de la fonction de transfert;

Classe d'une FTBO quelconque

Ordre, gain et classe de :
$$H_1(p) = \frac{8 p^3 + 2 p^2 + 3 p + 12}{9 p^5 + 4 p^3 + 6 p^2}$$

$$H_1(p) = \frac{8 p^3 + 2 p^2 + 3 p + 12}{9 p^5 + 4 p^3 + 6 p^2} = \frac{12}{6 p^2} \frac{\frac{2}{3} p^3 + \frac{1}{6} p^2 + \frac{1}{4} p + 1}{\frac{3}{2} p^3 + \frac{2}{3} p + 1}$$

Classe d'une FTBO quelconque

Ordre, gain et classe de : $H_1(p) = \frac{8 p^3 + 2 p^2 + 3 p + 12}{9 p^5 + 4 p^3 + 6 p^2}$

$$H_1(p) = \frac{8 \ p^3 + 2 \ p^2 + 3 \ p + 12}{9 \ p^5 + 4 \ p^3 + 6 \ p^2} = \frac{12}{6 \ p^2} \frac{\frac{2}{3} p^3 + \frac{1}{6} \ p^2 + \frac{1}{4} \ p + 1}{\frac{3}{2} p^3 + \frac{2}{3} \ p + 1}$$

Classe d'une FTBO quelconque

Ordre, gain et classe de : $H_1(p) = \frac{8 p^3 + 2 p^2 + 3 p + 12}{9 p^5 + 4 p^3 + 6 p^2}$

$$H_1(p) = \frac{8 \ p^3 + 2 \ p^2 + 3 \ p + 12}{9 \ p^5 + 4 \ p^3 + 6 \ p^2} = \frac{12}{6 \ p^2} \frac{\frac{2}{3} p^3 + \frac{1}{6} \ p^2 + \frac{1}{4} \ p + 1}{\frac{3}{2} p^3 + \frac{2}{3} \ p + 1}$$

- Ordre : 5.

Classe d'une FTBO quelconque

Ordre, gain et classe de : $H_1(p) = \frac{8 p^3 + 2 p^2 + 3 p + 12}{9 p^5 + 4 p^3 + 6 p^2}$

$$H_1(p) = \frac{8 \ p^3 + 2 \ p^2 + 3 \ p + 12}{9 \ p^5 + 4 \ p^3 + 6 \ p^2} = \frac{12}{6 \ p^2} \frac{\frac{2}{3} p^3 + \frac{1}{6} \ p^2 + \frac{1}{4} \ p + 1}{\frac{3}{2} p^3 + \frac{2}{3} \ p + 1}$$

- Ordre : 5.
- Gain: 2.

7/41

Introduction : classe et ordre d'une fonction de transfert

Classe d'une FTBO quelconque

Ordre, gain et classe de : $H_1(p) = \frac{8 p^3 + 2 p^2 + 3 p + 12}{9 p^5 + 4 p^3 + 6 p^2}$

۰

$$H_1(p) = \frac{8 p^3 + 2 p^2 + 3 p + 12}{9 p^5 + 4 p^3 + 6 p^2} = \frac{12}{6 p^2} \frac{\frac{2}{3} p^3 + \frac{1}{6} p^2 + \frac{1}{4} p + 1}{\frac{3}{2} p^3 + \frac{2}{3} p + 1}$$

Ordre : 5.

• Gain: 2.

Classe : 2.

Classe d'une FTBO quelconque

Ordre, gain et classe de :
$$H_2(p) = \frac{7 p^4 + 3 p^3 + 2 p + 7}{p^3 + 2 p^2 + 6}$$

$$H_2(p) = \frac{7 p^4 + 3 p^3 + 2 p + 7}{p^3 + 2 p^2 + 6} = \frac{7}{6 p^0} \frac{p^4 + \frac{3}{7} p^3 + \frac{2}{7} p + 1}{\frac{1}{6} p^3 + \frac{1}{3} p^2 + 1}$$

Classe d'une FTBO quelconque

Ordre, gain et classe de : $H_2(p) = \frac{7 p^4 + 3 p^3 + 2 p + 7}{p^3 + 2 p^2 + 6}$

$$H_2(p) = \frac{7 p^4 + 3 p^3 + 2 p + 7}{p^3 + 2 p^2 + 6} = \frac{7}{6 p^0} \frac{p^4 + \frac{3}{7} p^3 + \frac{2}{7} p + 1}{\frac{1}{6} p^3 + \frac{1}{3} p^2 + 1}$$

- Ordre :
- Gain: $\frac{1}{6}$.

Classe d'une FTBO quelconque

Ordre, gain et classe de : $H_2(p) = \frac{7 p^4 + 3 p^3 + 2 p + 7}{p^3 + 2 p^2 + 6}$

•

$$H_2(p) = \frac{7 p^4 + 3 p^3 + 2 p + 7}{p^3 + 2 p^2 + 6} = \frac{7}{6 p^0} \frac{p^4 + \frac{3}{7} p^3 + \frac{2}{7} p + 1}{\frac{1}{6} p^3 + \frac{1}{3} p^2 + 1}$$

- Ordre : 3.
- Gain : $\frac{7}{6}$.

Classe d'une FTBO quelconque

Ordre, gain et classe de : $H_2(p) = \frac{7 p^4 + 3 p^3 + 2 p + 7}{p^3 + 2 p^2 + 6}$

•

$$H_2(p) = \frac{7 p^4 + 3 p^3 + 2 p + 7}{p^3 + 2 p^2 + 6} = \frac{7}{6 p^0} \frac{p^4 + \frac{3}{7} p^3 + \frac{2}{7} p + 1}{\frac{1}{6} p^3 + \frac{1}{3} p^2 + 1}$$

- Ordre : 3.
- Gain : $\frac{7}{6}$.
- Classe : 0

Classe d'une FTBO quelconque

Ordre, gain et classe de : $H_2(p) = \frac{7 p^4 + 3 p^3 + 2 p + 7}{p^3 + 2 p^2 + 6}$

•

$$H_2(p) = \frac{7 p^4 + 3 p^3 + 2 p + 7}{p^3 + 2 p^2 + 6} = \frac{7}{6 p^0} \frac{p^4 + \frac{3}{7} p^3 + \frac{2}{7} p + 1}{\frac{1}{6} p^3 + \frac{1}{3} p^2 + 1}$$

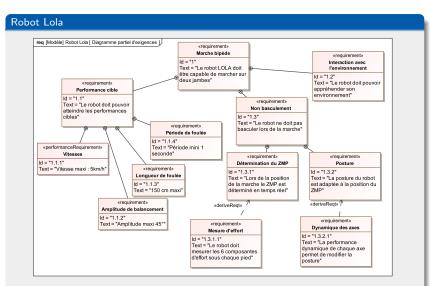
• Ordre : 3.

• **Gain** : $\frac{7}{6}$.

• Classe : 0.

Plan

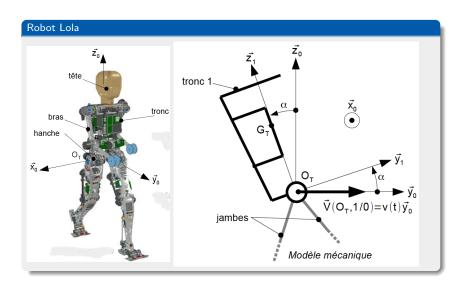
- Intérêts et objectifs
 - Introduction
 - Classe et ordre d'une fonction de transfert
 - Exemple du cours
- Stabilité
 - Définition et propriétés
 - Critères de stabilité
 - Marge de stabilité
 - Application aux systèmes du premier et deuxième ordre



Émilien DURIE

11/41

Exemple du cours



Robot Lola

On s'intéresse ici à la mise en place d'une commande permettant d'assurer les performances dynamiques du robot Lola en terme de maintien d'une posture vertical. On note $\alpha(t)$, l'angle de tangage. Cet axe est actionné par un moteur à courant continu avec une tension d'alimentation noté $U_{\rm c}(t)$.

1.3.2.1 Performance dynamique de chaque axe permet de modifier la posture					
Critère	Niveau	Flexibilité			
Marge de phase	$M\varphi=50^{\circ}$	Mini			
Erreur Statique	0°	±0,5°			
Bande passante à 0 dB en boucle ouverte	$\omega_{BP} = 50 rad \cdot s^{-1}$	Mini			
Temps de réponse à 5%	0, 2 <i>s</i>	Maxi			
Dépassement	1°	Maxi			

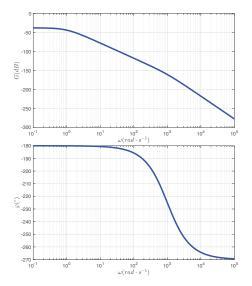
Robot Lola

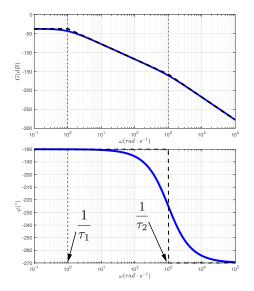
On peut montrer que la fonction de transfert du robot Lola en boucle ouverte est de la forme :

$$F(p) = \frac{\alpha(p)}{U_c(p)} = \frac{K}{(1 + \tau_1 \cdot p)(-1 + \tau_1 \cdot p)(1 + \tau_2 \cdot p)}$$

Q 1 : Proposer un tracé asymptotique sur le diagramme de Bode de F(p)







Q 2 : En analysant les diagrammes de Bode ci-dessus, déterminer les valeurs de τ_1 , τ_2 et K.

ω	$0 ightarrow rac{1}{ au_1}$		$\frac{1}{\tau_1}$	$rac{1}{ au_1} ightarrow rac{1}{ au_2}$		$\frac{1}{\tau_2}$	$rac{1}{ au_2} o\infty$	
Tracé asymp- to- tique	Gain (dB/de	φ(°) c)	Gain (dB)	Gain (dB/de	φ(°) ε)	Gain (<i>dB</i>)	Gain (dB/de	φ(°) c)
$\frac{K}{-1+\tau_1 \cdot p}$								
$\frac{1}{1+ au_1\cdot p}$								
$\frac{1}{1+ au_2\cdot p}$								
F(p)								

Q 2 : En analysant les diagrammes de Bode ci-dessus, déterminer les valeurs de τ_1 , τ_2 et K.

ω	0 -	$\rightarrow \frac{1}{\tau_1}$	$\frac{1}{\tau_1}$	$\frac{1}{\tau_1}$ -	$\rightarrow \frac{1}{\tau_2}$	$\frac{1}{\tau_2}$	$\frac{1}{\tau_2}$ -	$\rightarrow \infty$
Tracé asymp- to- tique	Gain (dB/de	' ' '	Gain (dB)	Gain (dB/de		Gain (dB)	Gain (dB/de	
$\frac{K}{-1+ au_1\cdot\mu}$, 0	-180	20logK	-20	-90	Continuité	-20	-90
$\frac{1}{1+\tau_1 \cdot p}$	0	0	0	-20	-90	Continuité	-20	-90
$\frac{1}{1+\tau_2 \cdot p}$	0	0	0	0	0	0	-20	-90
F(p)	0	-180	20logK	-40	-180	Continuité	-60	-270

Intérêts et objectifs Stabilité

Exemple du cours

Robot Lola

Q 2 : En analysant les diagrammes de Bode ci-dessus, déterminer les valeurs de τ_1 , τ_2 et K.

Robot Lola

Q 2 : En analysant les diagrammes de Bode ci-dessus, déterminer les valeurs de τ_1 , τ_2 et K.

Par identification, on trouve :

- $\tau_1 = 1 s$;
- $\tau_2 = 10^{-3} s$;
- $K = 10^{-\frac{37,5}{20}} = 0,013 rad \cdot V^{-1}$.

Émilien DURIF

Robot Lola

Par la suite, on simplifie F(p) par $\frac{K}{(1+\tau_1\cdot p)(-1+\tau_1\cdot p)}$.

Q 3 : Justifier ce choix de simplification.

Intérêts et objectifs Stabilité

Exemple du cours

Robot Lola

Par la suite, on simplifie F(p) par $\frac{K}{(1+\tau_1\cdot p)(-1+\tau_1\cdot p)}$.

Q 3 : Justifier ce choix de simplification.

 $\tau_2 << \tau_1$ donc l'effet de $\frac{1}{1+\tau_2\cdot p}$ est négligeable sur la réponse.

La forme simplifiée est justifiée. Sur le Bode on remarque que le modèle simplifié est satisfaisant jusqu'à 100rad/s > 50rad/s (bande passante visée en BO)

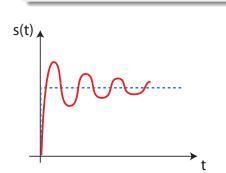
Émilien DURIF 17/4:

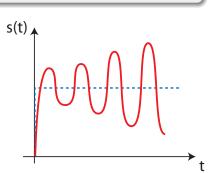
Plan

- Intérêts et objectifs
 - Introduction
 - Classe et ordre d'une fonction de transfert
 - Exemple du cours
- Stabilité
 - Définition et propriétés
 - Critères de stabilité
 - Marge de stabilité
 - Application aux systèmes du premier et deuxième ordre

Stabilité

- La stabilité traduit la propriété de convergence temporelle asymptotique vers un état d'équilibre d'un système.
- Un système est dit stable au sens Entrée-Bornée-Sortie-Bornée (EBSB) si lorsqu'on lui applique une entrée bornée, la sortie reste bornée.

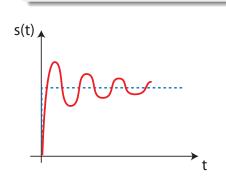


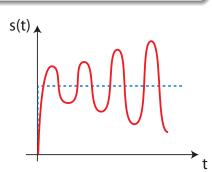


Émilien DURIF

Stabilité

- La stabilité traduit la propriété de convergence temporelle asymptotique vers un état d'équilibre d'un système.
- Un système est dit stable au sens Entrée-Bornée-Sortie-Bornée (EBSB) si, lorsqu'on lui applique une entrée bornée, la sortie reste bornée.





Émilien DURIF

Condition de stabilité avec les pôle de la FTBF

• Soit un système linéaire continu et invariant. Sa fonction de transfert en boucle fermée (FTBF(p)) peut se mettre sous la forme suivant :

$$H(p) = \frac{N(p)}{D(p)} = \frac{a \prod_{i=1}^{n} (p - z_i)^{k_i}}{b \prod_{j=1}^{m} (p - d_j)^{l_i}}$$

$$(2)$$
FTBF(p)

- Les $z1, ...z_n$ sont les racines de N(p) et sont appelés les **zéros de la FTBF**.
- Les $d1, ...d_n$ sont les racines de D(p) et sont appelés les **pôles de la FTBF**.
- Un système est stable si les pôles de sa <u>FTBF</u> sont tous à partie réelle strictement négative.

Stabilite

Condition de stabilité avec les pôle de la FTBF

 Soit un système linéaire continu et invariant. Sa fonction de transfert en boucle fermée (FTBF(p)) peut se mettre sous la forme suivant :

$$H(p) = \frac{N(p)}{D(p)} = \frac{a \prod_{i=1}^{n} (p - z_i)^{k_i}}{b \prod_{j=1}^{m} (p - d_j)^{l_i}}$$

$$(2)$$
FTBF(p)

- Les $z1, ...z_n$ sont les racines de N(p) et sont appelés les **zéros de la FTBF**.
- Les $d1, ...d_n$ sont les racines de D(p) et sont appelés les **pôles de la FTBF**.
- Un système est stable si les pôles de sa <u>FTBF</u> sont tous à partie réelle strictement négative.

Demonstration

• On peut classifier les pôles suivant qu'ils soient :

```
• réels : d_i^r ;
```

- réels multiples d'ordre n_i : d_i^m;
- complexes : $d_i^c = r_i \pm$
- complexes multiples d'ordre n_i : $d_i = r_i^m \pm i \omega_i^m$:
- On peut alors réaliser une décomposition en éléments simples en classifiant les termes suivant les quatre catégories précédentes. On obtient alors la sortie s(t) qui s'écrit comme une combinaison linéaire de quatre type de fonctions :

```
\begin{aligned} & \circ s_{1}(t) = e^{s_{1}^{r_{1}}t} u(t); \\ & \circ s_{2}(t) = t^{s_{1}-1} e^{s_{1}^{r_{1}-1}t} u(t); \\ & \circ s_{3}(t) = A_{1} \cos(\omega_{1} t + \varphi_{1}) e^{s_{1}-t} u(t); \\ & \circ c_{3}(t) = B_{2} \cos(\omega_{1}^{r_{1}}t + \varphi_{2}) e^{s_{1}-t} u(t); \end{aligned}
```

 Ainsi pour que la sortie reste bornée, il faut donc que les fonctions exponentielles soient décroissantes et donc que d^r_i, d^m_i, r_i et r^m_i soient négatifs donc que les pôles soient à partie réelle strictement négative.

Demonstration

- On peut classifier les pôles suivant qu'ils soient :
 - réels : d^r;
 - réels multiples d'ordre $n_i:d_i^m$;
 - complexes: $d^c = r_i + i \omega$
 - complexes multiples d'ordre n_i : $d_i = r_i^m \pm i \omega_i^m$;
- On peut alors réaliser une décomposition en éléments simples en classifiant les termes suivant les quatre catégories précédentes. On obtient alors la sortie s(t) qui s'écrit comme une combinaison linéaire de quatre type de fonctions :

```
• s_1(t) = e^{i\gamma_1 t} u(t);

• s_2(t) = t^{i\gamma_1 - 1} e^{i\gamma_1^{(j)} t} u(t);

• s_3(t) = A_1 \cos(\omega_1 t + \varphi_1) e^{i\gamma_1 t} u(t);
```

 Ainsi pour que la sortie reste bornée, il faut donc que les fonctions exponentielles soient décroissantes et donc que d^r_i, d^m_i, r_i et r^m_i soient négatifs donc que les pôles soient à partie réelle strictement négative

Demonstration

- On peut classifier les pôles suivant qu'ils soient :
 - réels : *d*^r;
 - réels multiples d'ordre $n_i:d_i^m$;
 - complexes : $d_i = r_i \pm j \omega_i$
 - complexes multiples d'ordre $n_i: d_i = r_i^m \pm j \ \omega_i^m$;
- On peut alors réaliser une décomposition en éléments simples en classifiant les termes suivant les quatre catégories précédentes. On obtient alors la sortie s(t) qui s'écrit comme une combinaison linéaire de quatre type de fonctions :
 - $\bullet \ \ s_1(t)=e^{\sigma_i\ t}\ u(t);$
 - $a_{i} \in (t) = t^{n_{i}-1} e^{d_{i}^{m} t} u(t)$
 - $a_{2}(t) = A_{1} \cos(t + t + t) \sin(t)$
 - $s_3(t) = A_i \cos(\omega_i t + \varphi_i) e^{it} u(t)$
 - $s_4(t) = B_i \cos(\omega_i^m t + \varphi_i) t^{\eta_i 1} e^{r_i^{m} t} u(t)$
- Ainsi pour que la sortie reste bornée, il faut donc que les fonctions exponentielles soient décroissantes et donc que d^r_i, d^m_i, r_i et r^m_i soient négatifs donc que les pôles soient à partie réelle strictement négative.

Demonstration

- On peut classifier les pôles suivant qu'ils soient :
 - réels : d^r;
 - réels multiples d'ordre n_i : d_i^m ;
 - complexes : $d_i^c = r_i \pm j \omega_i$;
 - complexes multiples d'ordre n_i : $d_i = r_i^m \pm i \omega_i^m$;
- On peut alors réaliser une décomposition en éléments simples en classifiant les termes suivant les quatre catégories précédentes. On obtient alors la sortie s(t) qui s'écrit comme une combinaison linéaire de quatre type de fonctions :
 - $s_1(t) = e^{s_1 \cdot s_2} u(t)$;
 - $s_{0}(t) = t^{n_{i}-1} e^{d_{i}^{m-1}} u(t)$;
 - $e^{-s(t)} = A: \cos(u_1: t + u_2) e^{\eta \cdot t} u(t)$
 - $s_i(t) = B_i \cos(\omega_i^m t + \omega_i) t^{n_i-1} e^{t^m t} u(t)$
- Ainsi pour que la sortie reste bornée, il faut donc que les fonctions exponentielles soient décroissantes et donc que d^r_i, d^m_i, r_i et r^m_i soient négatifs donc que les nôles soient à partie réelle strictement négative

Demonstration

- On peut classifier les pôles suivant qu'ils soient :
 - réels : d^r;
 - réels multiples d'ordre n_i : d_i^m ;
 - complexes : $d_i^c = r_i \pm j \ \omega_i$;
 - complexes multiples d'ordre n_i : $d_i = r_i^m \pm j \ \omega_i^m$;
- On peut alors réaliser une décomposition en éléments simples en classifiant les termes suivant les quatre catégories précédentes. On obtient alors la sortie s(t) qui s'écrit comme une combinaison linéaire de quatre type de fonctions :
 - $s_1(t) = e^{d_i^t t} u(t);$
 - $s_{0}(t) = t^{n_{i}-1} e^{d_{i}^{m} t} u(t)$;

 - $s_3(t) = A_i \cos(\omega_i t + \varphi_i) e^{it} u(t)$;
 - $s_4(t) = B_i \cos(\omega_i^m t + \varphi_i) t^{n_i-1} e^{r_i^{m-t}} u(t)$
- Ainsi pour que la sortie reste bornée, il faut donc que les fonctions exponentielles soient décroissantes et donc que d^r_i, d^m_i, r_i et r^m_i soient négatifs donc que les pôles soient à partie réelle strictement négative.

Demonstration

- On peut classifier les pôles suivant qu'ils soient :
 - réels : d_i^r ;
 - réels multiples d'ordre $n_i:d_i^m$;
 - complexes : $d_i^c = r_i \pm j \omega_i$;
 - complexes multiples d'ordre n_i : $d_i = r_i^m \pm j \ \omega_i^m$;
- On peut alors réaliser une décomposition en éléments simples en classifiant les termes suivant les quatre catégories précédentes. On obtient alors la sortie s(t) qui s'écrit comme une combinaison linéaire de quatre type de fonctions :
 - $s_1(t) = e^{s_1 t} u(t);$ • $s_2(t) = t^{n_i - 1} e^{d_i^m t} u(t);$ • $s_3(t) = A_i \cos(\omega_i t + \varphi_i) e^{r_i t} u(t);$
 - $s_4(t) = B_i \cos(\omega_i^m t + \varphi_i) t^{n_i 1} e^{r_i^m t} u(t)$
- Ainsi pour que la sortie reste bornée, il faut donc que les fonctions exponentielles soient décroissantes et donc que d^r_i, d^m_i, r_i et r^m_i soient négatifs donc que les pôles soient à partie réelle strictement négative.

Demonstration

- On peut classifier les pôles suivant qu'ils soient :
 - réels : d_i^r ;
 - réels multiples d'ordre $n_i:d_i^m$;
 - complexes : $d_i^c = r_i \pm j \omega_i$;
 - complexes multiples d'ordre n_i : $d_i = r_i^m \pm j \omega_i^m$;
- On peut alors réaliser une décomposition en éléments simples en classifiant les termes suivant les quatre catégories précédentes. On obtient alors la sortie s(t) qui s'écrit comme une combinaison linéaire de quatre type de fonctions :
 - $s_1(t) = e^{d_i^T t} u(t);$ • $s_2(t) = t^{n_i - 1} e^{d_i^{m_i} t} u(t);$ • $s_3(t) = A_i \cos(\omega_i t + \varphi_i) e^{r_i t} u(t);$
 - Ainsi pour que la sortie reste bornée, il faut donc que les fonctions exponentiell soient décroissantes et donc que d_i^r , d_i^m , r_i et r_i^m soient négatifs donc que les

Demonstration

- On peut classifier les pôles suivant qu'ils soient :
 - réels : *d*^r;
 - réels multiples d'ordre $n_i:d_i^m$;
 - complexes : $d_i^c = r_i \pm j \omega_i$;
 - complexes multiples d'ordre n_i : $d_i = r_i^m \pm i \omega_i^m$;
- On peut alors réaliser une décomposition en éléments simples en classifiant les termes suivant les quatre catégories précédentes. On obtient alors la sortie s(t) qui s'écrit comme une combinaison linéaire de quatre type de fonctions :
 - $s_1(t) = e^{d_i^T t} u(t);$ • $s_2(t) = t^{n_i - 1} e^{d_i^m t} u(t);$ • $s_3(t) = A_i \cos(\omega_i t + \varphi_i) e^{q_i t} u(t);$ • $s_4(t) = B_i \cos(\omega_i^m t + \varphi_i) t^{n_i - 1} e^{q_i^m t} u(t);$
- Ainsi pour que la sortie reste bornée, il faut donc que les fonctions exponentielles soient décroissantes et donc que d^r_i, d^m_i, r_i et r^m_i soient négatifs donc que les pôles soient à partie réelle strictement négative.

Demonstration

- On peut classifier les pôles suivant qu'ils soient :
 - réels : d_i^r ;
 - réels multiples d'ordre $n_i:d_i^m$;
 - complexes : $d_i^c = r_i \pm j \ \omega_i$;
 - complexes multiples d'ordre n_i : $d_i = r_i^m \pm i \omega_i^m$;
- On peut alors réaliser une décomposition en éléments simples en classifiant les termes suivant les quatre catégories précédentes. On obtient alors la sortie s(t) qui s'écrit comme une combinaison linéaire de quatre type de fonctions :
 - $s_1(t) = e^{d_i^r t} u(t);$
 - $s_2(t) = t^{n_i-1} e^{d_i^m t} u(t);$
 - $s_3(t) = A_i \cos(\omega_i t + \varphi_i) e^{r_i t} u(t)$;
 - $s_4(t) = B_i \cos(\omega_i^m t + \varphi_i) t^{n_i-1} e^{r_i^m t} u(t)$
- Ainsi pour que la sortie reste bornée, il faut donc que les fonctions exponentielles soient décroissantes et donc que d^r_i, d^m_i, r_i et r^m_i soient négatifs donc que les pôles soient à partie réelle strictement négative.

Demonstration

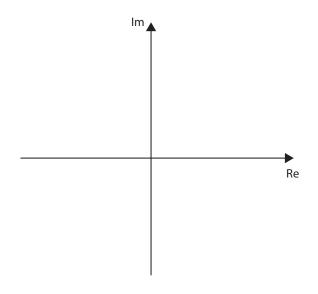
- On peut classifier les pôles suivant qu'ils soient :
 - réels : *d*^r;
 - réels multiples d'ordre $n_i:d_i^m$;
 - complexes : $d_i^c = r_i \pm j \omega_i$;
 - complexes multiples d'ordre n_i : $d_i = r_i^m \pm i \omega_i^m$;
- On peut alors réaliser une décomposition en éléments simples en classifiant les termes suivant les quatre catégories précédentes. On obtient alors la sortie s(t) qui s'écrit comme une combinaison linéaire de quatre type de fonctions :
 - $s_1(t) = e^{d_i^r t} u(t)$;
 - $s_2(t) = t^{n_i-1} e^{d_i^m t} u(t)$;
 - $s_3(t) = A_i \cos(\omega_i t + \varphi_i) e^{r_i t} u(t)$;
 - $s_4(t) = B_i \cos(\omega_i^m t + \varphi_i) t^{n_i-1} e^{r_i^m t} u(t);$
- Ainsi pour que la sortie reste bornée, il faut donc que les fonctions exponentielles soient décroissantes et donc que d^r_i, d^m_i, r_i et r^m_i soient négatifs donc que les pôles soient à partie réelle strictement négative.

Demonstration

- On peut classifier les pôles suivant qu'ils soient :
 - réels : *d*^r;
 - réels multiples d'ordre $n_i:d_i^m$;
 - complexes : $d_i^c = r_i \pm j \ \omega_i$;
 - complexes multiples d'ordre $n_i: d_i = r_i^m \pm j \ \omega_i^m$;
- On peut alors réaliser une décomposition en éléments simples en classifiant les termes suivant les quatre catégories précédentes. On obtient alors la sortie s(t) qui s'écrit comme une combinaison linéaire de quatre type de fonctions :
 - $s_1(t) = e^{d_i^r t} u(t);$
 - $s_2(t) = t^{n_i-1} e^{d_i^m t} u(t);$
 - $s_3(t) = A_i \cos(\omega_i t + \varphi_i) e^{r_i t} u(t)$;
 - $s_4(t) = B_i \cos(\omega_i^m t + \varphi_i) t^{n_i-1} e^{r_i^m t} u(t);$
- Ainsi pour que la sortie reste bornée, il faut donc que les fonctions exponentielles soient décroissantes et donc que d_i^r, d_i^m, r_i et r_i^m soient négatifs donc que les pôles soient à partie réelle strictement négative.

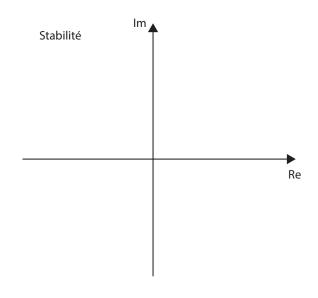
Intérêts et objectifs Stabilité

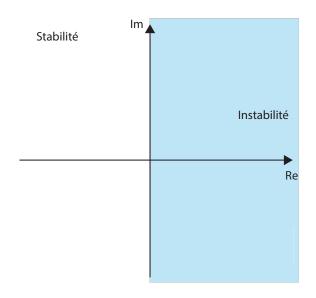
Stabilité

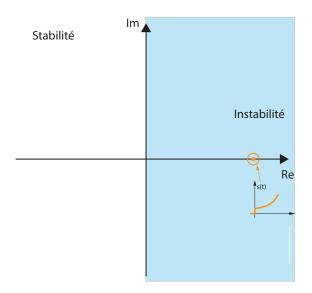


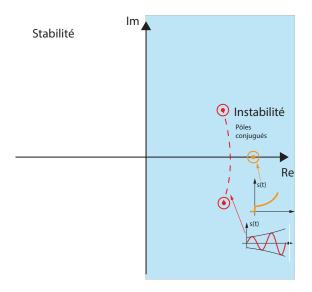
Intérêts et objectifs Stabi

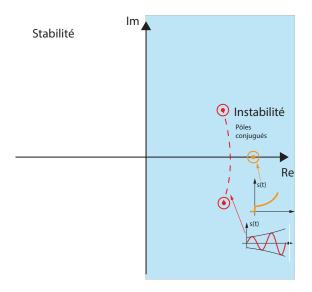
Stabilité

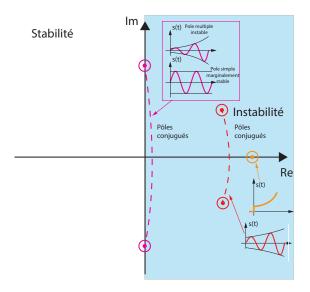


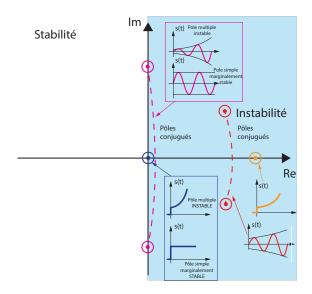


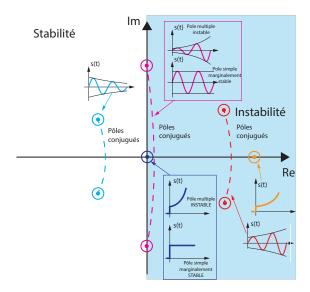


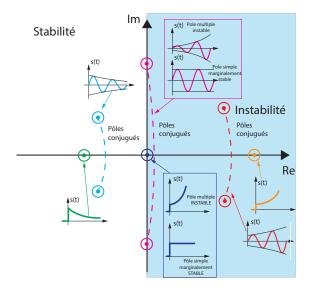


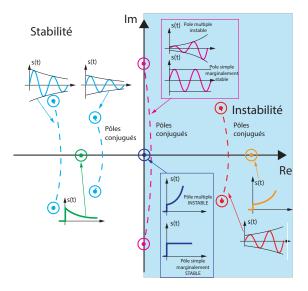


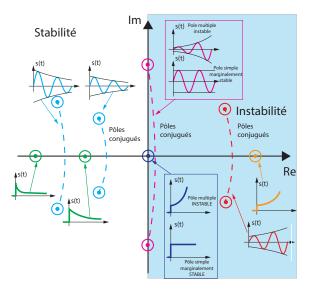


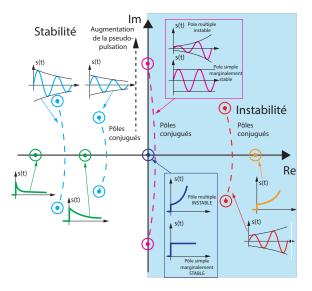


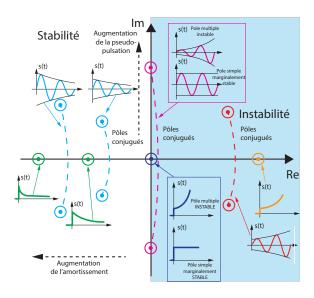






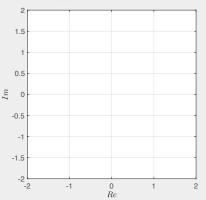






Robot Lola

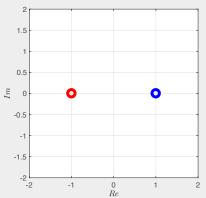
Q 4 : Représenter les pôles de F(p) dans le plan complexe.



Q 5 : Que pouvons-nous dire sur la stabilité en boucle ouverte du système.

Robot Lola

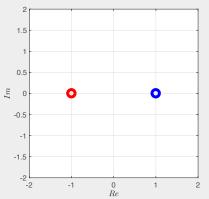
Q 4 : Représenter les pôles de F(p) dans le plan complexe.



Q 5 : Que pouvons-nous dire sur la stabilité en boucle ouverte du système.

Robot Lola

Q 4 : Représenter les pôles de F(p) dans le plan complexe.



Q 5 : Que pouvons-nous dire sur la stabilité en boucle ouverte du système. Il existe un pôle à partie réelle positive donc le système n'est pas stable en boucle ouverte.

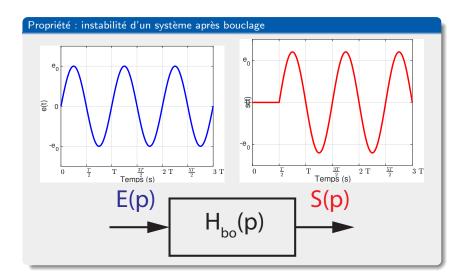
Un système peut être intrinsèquement stable (en Boucle ouverte) mais le fait de l'asservir peut le rendre instable.

Propriété : instabilité d'un système après bouclage

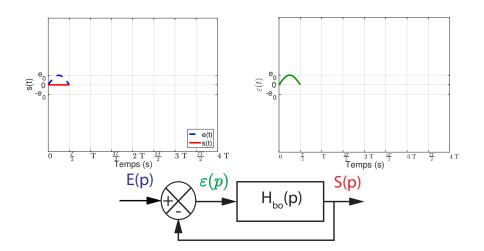
Soit un système en boucle ouverte :

- sollicité par une entrée sinusoïdale de période T et d'amplitude e_0 ;
- de fonction de transfert $H_{bo}(p)$;
- avec un gain $K_{bo}(T) > 1$;
- dans une configuration avec un déphasage d'une demi période $(\varphi(T) = -180^{\circ})$.

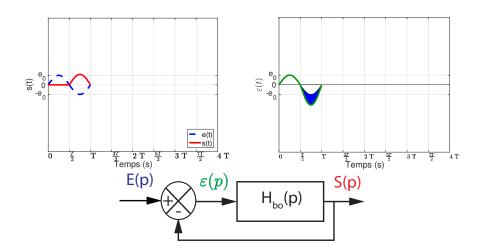
Instabilité après bouclage

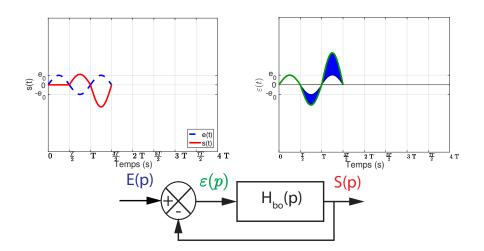


Instabilité après bouclage

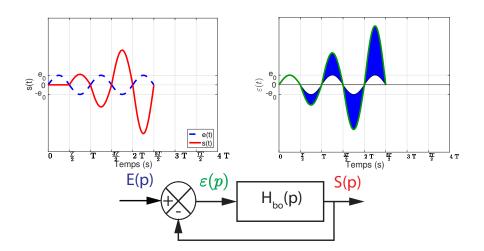


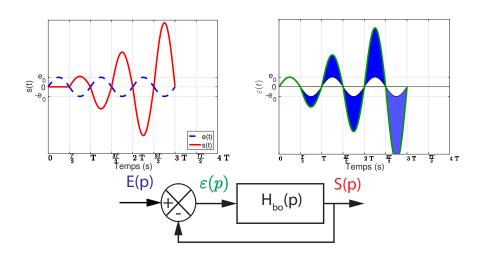
Instabilité après bouclage

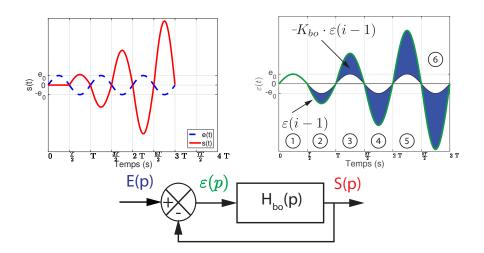












Plan

- Intérêts et objectifs
 - Introduction
 - Classe et ordre d'une fonction de transfert
 - Exemple du cours
- Stabilité
 - Définition et propriétés
 - Critères de stabilité
 - Marge de stabilité
 - Application aux systèmes du premier et deuxième ordre

Émilien DURIF 27/41

Stabilité : critère de stabilité algébrique

Soit un système linéaire, continu et invariant quelconque avec pour fonction de transfert :

$$FTBF(p) = \frac{N(p)}{D(p)}$$

Avec
$$D(p) = a_n p^n + a_{n-1} p^{n-1} + ... + a_0$$

Condition nécessaire de stabilité

Pour qu'un système soit stable au sens "EBSB", il est nécessaire que les coefficients $a_0, \ldots a_n$ du polynôme du dénominateur de sa fonction de transfert en boucle fermée soient tous strictement positifs

Émilien DURIF 28/41

Stabilité : critère de stabilité algébrique

Soit un système linéaire, continu et invariant quelconque avec pour fonction de transfert :

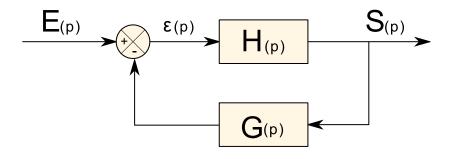
$$FTBF(p) = \frac{N(p)}{D(p)}$$

Avec
$$D(p) = a_n p^n + a_{n-1} p^{n-1} + ... + a_0$$

Condition nécessaire de stabilité

Pour qu'un système soit stable au sens "EBSB", il est nécessaire que les coefficients $a_0, \ldots a_n$ du polynôme du dénominateur de sa fonction de transfert en boucle fermée soient tous strictement positifs

Émilien DURIF 28/41



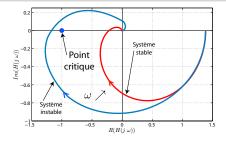
$$FTBF(p) = \frac{H(p)}{1 + FTBO(p)}.$$

Ainsi chercher une condition sur les pôles de la FTBF(p) revient à chercher des conditions sur les zéros de 1+FTBO(p) appelé **polynôme caractéristique**. On appelle alors le **point critique**, le point qui dans le plan complexe a pour affixe -1 (module 1, argument -180° .

Émilien DURIF 29/41

Critère du revers

Un système est stable en boucle fermée si en parcourant le lieu de Nyquist de la FTBO(p), dans le sens des ω croissants, on laisse le point critique -1 sur la gauche.

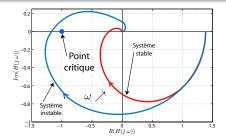


Remarque

réelle strictement positive.
Si un système a son diagramme de Nyquist qui passe par le point -1, alors cela signifie que la fonction 1 + FTBO(p) possède un pôle imaginaire pur : réponse indicielle est oscillatoire.

Critère du revers

Un système est stable en boucle fermée si en parcourant le lieu de Nyquist de la FTBO(p), dans le sens des ω croissants, on laisse le point critique -1 sur la gauche.

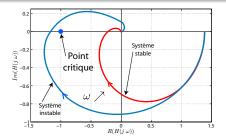


Remarque

- Ce critère valable uniquement si la FTBO(p) ne possède pas de pôle à partie réelle strictement positive.
- Si un système a son diagramme de Nyquist qui passe par le point -1, alors cela signifie que la fonction 1 + FTBO(p) possède un pôle imaginaire pur : réponse indicielle est oscillatoire.

Critère du revers

Un système est stable en boucle fermée si en parcourant le lieu de Nyquist de la FTBO(p), dans le sens des ω croissants, on laisse le point critique -1 sur la gauche.



Remarque

- Ce critère valable uniquement si la FTBO(p) ne possède pas de pôle à partie réelle strictement positive.
- Si un système a son diagramme de Nyquist qui passe par le point -1, alors cela signifie que la fonction 1 + FTBO(p) possède un pôle imaginaire pur : réponse indicielle est oscillatoire.

Critère du revers

Un système est stable en boucle fermée si en parcourant le lieu de Nyquist de la FTBO(p), dans le sens des ω croissants, on laisse le point critique -1 sur la gauche.



Remarque

- Ce critère valable uniquement si la FTBO(p) ne possède pas de pôle à partie réelle strictement positive.
- Si un système a son diagramme de Nyquist qui passe par le point -1, alors cela signifie que la fonction 1 + FTBO(p) possède un pôle imaginaire pur : réponse indicielle est oscillatoire.

- Le point critique d'affixe -1 s'écrit $e^{-i\pi}$. Dans le diagramme de Bode en gain ce point correspond à un gain nul car $G_{dB}=20\ log(1)=0$. Ainsi pour laisser le point critique -1 "à gauche" sur le diagramme de Nyquist et donc avoir un système stable, il faut :
 - avoir, pour la pulsation $\omega = \omega_{\varphi 180}$ correspondant à $arg\left(FTBO(j\;\omega)\right) = -180^\circ$, un gain inférieur à $0dB\left(G_{dB} = 20\;log(|FTBO(j\;\omega_{\varphi 180})| < 0dB\right)$, ou bien
 - avoir, pour la pulsation $\omega=\omega_{c0}$ correspondant à un gain nul $(G_{dB}=20\;log(|FTBO(j\;\omega)|=0)$, un argument supérieur à -180° $(arg\;(FTBO(j\;\omega_{c0}))>-180^\circ)$.

Remarque

Dans le cas de l'égalité des deux conditions précédentes :

 $a \in \mathbb{R} = 20 \log(|ETRO(i_{10} + a_{10})| = 0 \log(|ETRO(i_{10} + a_{10})|)$

• $arg\left(FTBO(j\;\omega_{cO})\right) = -180^\circ$; la fonction 1+FTBO(p) possède un pôle imaginaire pur. Cela se traduit par un gain infini pour une pulsation donnée su le diagramme de Bode. Le système est donc instable. La réponse indicielle est oscillatoire

- Le point critique d'affixe -1 s'écrit $e^{-i\pi}$. Dans le diagramme de Bode en gain ce point correspond à un gain nul car $G_{dB}=20\ log(1)=0$. Ainsi pour laisser le point critique -1 "à gauche" sur le diagramme de Nyquist et donc avoir un système stable, il faut :
 - avoir, pour la pulsation $\omega = \omega_{\varphi 180}$ correspondant à $arg\left(FTBO(j\ \omega)\right) = -180^{\circ}$, un gain inférieur à $0dB\left(G_{dB} = 20\ log(|FTBO(j\ \omega_{\varphi 180})| < 0dB\right)$, ou bien
 - avoir, pour la pulsation $\omega = \omega_{c0}$ correspondant à un gain nul $(G_{dB} = 20 \log(|FTBO(j \omega)| = 0)$, un argument supérieur à -180° $(arg (FTBO(j \omega_{c0})) > -180^{\circ})$.

Remarque

Dans le cas de l'égalité des deux conditions précédentes :

C 20 1-4/FFROG 24 ALL ALIB

 $= \arg (FIBO(p)\omega_{co})) = -180^\circ$; la fonction 1 + FIBO(p) possede un pôle imaginaire pur. Cela se traduit par un gain infini pour une pulsation donnée su le diagramme de Bode. Le système est donc instable. La réponse indicielle est oscillatoire.

- Le point critique d'affixe -1 s'écrit $e^{-i\pi}$. Dans le diagramme de Bode en gain ce point correspond à un gain nul car $G_{dB}=20\ log(1)=0$. Ainsi pour laisser le point critique -1 "à gauche" sur le diagramme de Nyquist et donc avoir un système stable, il faut :
 - avoir, pour la pulsation $\omega=\omega_{\varphi180}$ correspondant à $arg\left(FTBO(j\;\omega)\right)=-180^\circ$, un gain inférieur à $0dB\left(G_{dB}=20\;log(|FTBO(j\;\omega_{\varphi180})|<0dB\right)$, ou bien
 - avoir, pour la pulsation $\omega=\omega_{c0}$ correspondant à un gain nul ($G_{dB}=20~log(|FTBO(j~\omega)|=0)$, un argument supérieur à -180° ($arg~(FTBO(j~\omega_{c0}))>-180^\circ$).

Remarque

Dans le cas de l'égalité des deux conditions précédentes :

• $G_{dB} = 20 \log(|FTBO(j \omega_{\varphi 180})|)$

 $arg(FIBO(p\omega_{co})) = -180^{\circ}$; la fonction 1 + FIBO(p) possede un pôte imaginaire pur. Cela se traduit par un gain infini pour une pulsation donnée su le diagramme de Bode. Le système est donc instable. La réponse indicielle est oscillatoire.

- Le point critique d'affixe -1 s'écrit $\mathrm{e}^{-i\,\pi}$. Dans le diagramme de Bode en gain ce point correspond à un gain nul car $G_{dB}=20\ log(1)=0$. Ainsi pour laisser le point critique -1 "à gauche" sur le diagramme de Nyquist et donc avoir un système stable, il faut :
 - avoir, pour la pulsation $\omega=\omega_{\varphi180}$ correspondant à $arg\left(FTBO(j\;\omega)\right)=-180^\circ$, un gain inférieur à $0dB\left(G_{dB}=20\;log(|FTBO(j\;\omega_{\varphi180})|<0dB\right)$, ou bien
 - avoir, pour la pulsation $\omega=\omega_{c0}$ correspondant à un gain nul ($G_{dB}=20~log(|FTBO(j~\omega)|=0)$, un argument supérieur à -180° ($arg~(FTBO(j~\omega_{c0}))>-180^\circ$).

Remarque

Dans le cas de l'égalité des deux conditions précédentes :

- $G_{dB} = 20 \log(|FTBO(j \omega_{\omega 180})| = 0 dB$
- $arg\left(FTBO(j\ \omega_{cO})\right) = -180^\circ$; la fonction 1+FTBO(p) possède un pôle imaginaire pur. Cela se traduit par un gain infini pour une pulsation donnée sur le diagramme de Bode. Le système est donc instable. La réponse indicielle est oscillatoire.

- Le point critique d'affixe -1 s'écrit $e^{-i\pi}$. Dans le diagramme de Bode en gain ce point correspond à un gain nul car $G_{dB}=20\ log(1)=0$. Ainsi pour laisser le point critique -1 "à gauche" sur le diagramme de Nyquist et donc avoir un système stable, il faut :
 - avoir, pour la pulsation $\omega=\omega_{\varphi180}$ correspondant à $arg\left(FTBO(j\;\omega)\right)=-180^\circ$, un gain inférieur à $0dB\left(G_{dB}=20\;log(|FTBO(j\;\omega_{\varphi180})|<0dB\right)$, ou bien
 - avoir, pour la pulsation $\omega=\omega_{c0}$ correspondant à un gain nul ($G_{dB}=20~log(|FTBO(j~\omega)|=0)$, un argument supérieur à -180° ($arg~(FTBO(j~\omega_{c0}))>-180^\circ$).

Remarque

Dans le cas de l'égalité des deux conditions précédentes :

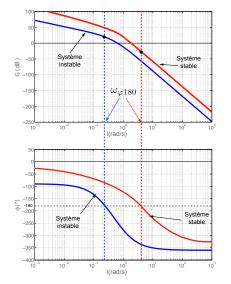
- $G_{dB} = 20 \log(|FTBO(j \omega_{\omega 180})| = 0 dB$
- $arg\left(FTBO(j\ \omega_{cO})\right) = -180^{\circ}$; la fonction 1+FTBO(p) possède un pôle imaginaire pur. Cela se traduit par un gain infini pour une pulsation donnée sur le diagramme de Bode. Le système est donc instable. La réponse indicielle est oscillatoire.

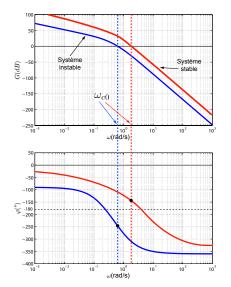
- Le point critique d'affixe -1 s'écrit $e^{-i\pi}$. Dans le diagramme de Bode en gain ce point correspond à un gain nul car $G_{dB}=20\ log(1)=0$. Ainsi pour laisser le point critique -1 "à gauche" sur le diagramme de Nyquist et donc avoir un système stable, il faut :
 - avoir, pour la pulsation $\omega=\omega_{\varphi180}$ correspondant à $arg\left(FTBO(j\;\omega)\right)=-180^\circ$, un gain inférieur à $0dB\left(G_{dB}=20\;log(|FTBO(j\;\omega_{\varphi180})|<0dB\right)$, ou bien
 - avoir, pour la pulsation $\omega=\omega_{c0}$ correspondant à un gain nul $(G_{dB}=20\;log(|FTBO(j\;\omega)|=0)$, un argument supérieur à -180° $(arg\;(FTBO(j\;\omega_{c0}))>-180^\circ)$.

Remarque

Dans le cas de l'égalité des deux conditions précédentes :

- $G_{dB} = 20 \log(|FTBO(j \omega_{\omega 180})| = 0 dB$
- $arg\left(FTBO(j\ \omega_{cO})\right) = -180^\circ$; la fonction 1+FTBO(p) possède un pôle imaginaire pur. Cela se traduit par un gain infini pour une pulsation donnée sur le diagramme de Bode. Le système est donc instable. La réponse indicielle est oscillatoire.





Robot Lola

Q 6 : Expliquer pourquoi le critère du revers ne peut pas être appliqué pour étudier la stabilité en boucle fermée.

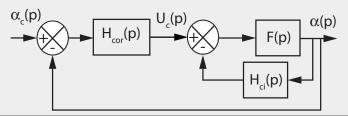
Robot Lola

 ${\sf Q}$ 6 : Expliquer pourquoi le critère du revers ne peut pas être appliqué pour étudier la stabilité en boucle fermée.

La fonction de transfert en BO a un pôle à partie réelle positive. Le système est donc instable en BO. Le critère du Revers stipule que le système en BO ne doit pas comporter de pôle à partie réelle strictement positive pour qu'il ait un sens. Ce critère n'est donc pas adapté pour vérifier la stabilité du système en BF.

Robot Lola

Afin de résoudre ce problème, il est décidé d'asservir la chaîne directe en position et en vitesse. Pour cela, la centrale inertielle permet de mesurer l'angle de tangage $\alpha(t)$ ainsi que la vitesse angulaire $\frac{d\alpha(t)}{dt}$. L'asservissement ainsi réalisé est présenté sous la forme du schéma-bloc ci-dessous. $U_c(p)$ est la tension de commande en sortie du correcteur. La fonction de transfert de la centrale inertielle sera prise égale à $H_{ci}(p) = K_1 \cdot (p+1)$.



Robot Lola

Q 7 : Déterminer deux conditions sur K_1 pour que la fonction de transfert en boucle ouverte non-corrigée $F_{BO}(p)=\frac{\alpha(p)}{U_c(p)}$ soit stable. En déduire la valeur minimale de K_1

Robot Lola

Q 7 : Déterminer deux conditions sur K_1 pour que la fonction de transfert en boucle ouverte non-corrigée $F_{BO}(p)=\frac{\alpha(p)}{U_c(p)}$ soit stable. En déduire la valeur minimale de K_1

$$F_{BO}(p) = \frac{\alpha(p)}{U_c(p)} = \frac{F(p)}{1 + F(p)H_{ci}(p)} = \frac{\frac{K}{(1 + \tau_1 \cdot p)(-1 + \tau_1 \cdot p)}}{1 + \frac{K \cdot K_1 \cdot (p + 1)}{(1 + \tau_1 \cdot p)(-1 + \tau_1 \cdot p)}}$$
$$= \frac{K}{K \cdot K_1 \cdot (p + 1) + (1 + \tau_1 \cdot p)(-1 + \tau_1 \cdot p)} = \frac{K}{K \cdot K_1 - 1 + K \cdot K_1 \cdot p + \tau_1^2 \cdot p^2}$$

Robot Lola

Q 7 : Déterminer deux conditions sur K_1 pour que la fonction de transfert en boucle ouverte non-corrigée $F_{BO}(p)=\frac{\alpha(p)}{U_c(p)}$ soit stable. En déduire la valeur minimale de K_1

Robot Lola

Q 7 : Déterminer deux conditions sur K_1 pour que la fonction de transfert en boucle ouverte non-corrigée $F_{BO}(p) = \frac{\alpha(p)}{U_F(p)}$ soit stable. En déduire la valeur minimale de K_1

Pour vérifier la condition nécessaire de stabilité, à savoir que tous les coefficients du dénominateur soit du même signe, sachant que K > 0:

II faut donc : $K_1 > \frac{1}{K}$.

Émilien DURIE 36/41

Plan

- Intérêts et objectifs
 - Introduction
 - Classe et ordre d'une fonction de transfert
 - Exemple du cours
- Stabilité
 - Définition et propriétés
 - Critères de stabilité
 - Marge de stabilité
 - Application aux systèmes du premier et deuxième ordre

Émilien DURIF 37/4:

Marge de gain

La marge de gain (ΔG ou MG_{dB}) se définit par :

$$\Delta G = -20 \log \left(|FTBO(j \,\omega_{\varphi 180})| \right). \tag{3}$$

avec $\omega_{\varphi 180}$, la pulsation correspondant à $arg\left(FTBO(j\ \omega)\right) = -180^{\circ}$.

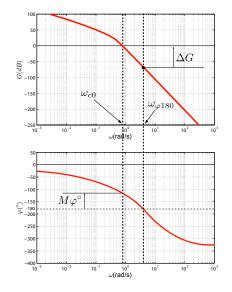
Marge de phase

La marge de phase $(M\varphi^{\circ})$ se définit par :

$$M\varphi^{\circ} = 180 + \arg\left(FTBO(j\ \omega_{c0})\right). \tag{4}$$

avec ω_{c0} , la pulsation correspondant à $G_{dB}=20~log(|FTBO(j~\omega)|=0$ ou $|FTBO(j~\omega_{c0}|=1.$

Interprétation dans le plan de Bode



Intérêts et objectifs Stabilité

Plan

- Intérêts et objectifs
 - Introduction
 - Classe et ordre d'une fonction de transfert
 - Exemple du cours
- Stabilité
 - Définition et propriétés
 - Critères de stabilité
 - Marge de stabilité
 - Application aux systèmes du premier et deuxième ordre

Émilien DURIF 40/41

Stabilité : application aux systèmes du premier et deuxième ordre

