

LYCÉE LA MARTINIÈRE MONPLAISIR LYON

SCIENCES INDUSTRIELLES POUR L'INGÉNIEUR

CLASSE PRÉPARATOIRE M.P.S.I. ET M.P.I.I.

Année 2024 - 2025

C4 : MODÉLISATION CINÉMATIQUE STRUCTURELLE DES SYSTÈMES

C4-1 - Modélisation des liaisons mécaniques

10 Décembre 2024

Table des matières

[Modélisation des contacts entre solides			
	1	Para	métrage	
	2	Vites	sse de glissement/ Roulement sans glisse-	
		men	t	
	3	Vites	sse de roulement / Vitesse de pivotement .	
Ι	Mo	délisa	tion des liaisons mécaniques	
	1	Con	tact entre les solides	
	2	Deg	rés de liberté	
II	Mo	délisa	tion des liaisons entre solides	
	1	Liais	sons normalisées	
		a)	La liaison encastrement	
		b)	La liaison sphère-plan	
		c)	La liaison pivot	
		d)	La liaison pivot-glissant	
		e)	La liaison glissière	
		f)	La liaison hélicoïdale	
		g)	La liaison sphérique	
		h)	La liaison sphérique à doigt	
		i)	La liaison plan-plan	
		j)	La liaison sphère-cylindre	
		k)	La liaison cylindre-plan	
	2	Tabl	eau des liaisons cinématiques normalisées	

Compétences

• Modéliser

- Proposer une modélisation des liaisons avec leurs caractéristiques géométriques.
- Proposer un modèle cinématique à partir d'un système réel ou d'une maquette numérique.
- Modéliser la cinématique d'un ensemble de solides.

• Communiquer

• Lire et décoder un document technique : Schéma Cinématique

- Soient deux solides S₁ et S₂ en contact pendant leur mouvement dans un repère R₀ (fig.1).
- Soit *I* un point de la zone de contact (on notera que la zone de contact sera souvent ramenée à cet unique point *I*).
- Soit Π le plan tangent au contact (i.e. tangent aux deux solides au point de contact).
- Soit \overrightarrow{n} la normale à ce plan.

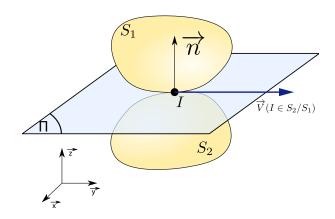


FIGURE 1 – Solides en contact, de plan tangent Π .

I. Modélisation des contacts entre solides

1 Paramétrage

2 Vitesse de glissement/ Roulement sans glissement

Définition 1 : vitesse de glissement/roulement sans glissement

• On appelle **vitesse de glissement** au point I, de S_2 par rapport à S_1 le vecteur vitesse du point I dans le mouvement de S_2 par rapport à S_1 (fig.1):

$$\overrightarrow{V}(I \in S_2/S_1). \tag{1}$$

• On dit qu'il y a **roulement sans glissement** au point *I* si :

$$\overrightarrow{V}(I \in S_2/S_1) = \overrightarrow{0} \tag{2}$$

Dans ce cas, on dit que S_2 "roule sans glisser" sur S_1 .

- $\overrightarrow{V}([\in I/])S_2S_1$ est contenu dans le plan Π (sinon il y aura inter-pénétration des deux solides, ou décollement du contact)
- Décomposition :

$$\overrightarrow{V}(I \in S_2/S_1) = \overrightarrow{V}(I \in S_2/R_0) - \overrightarrow{V}(I \in S_1/R_0)$$

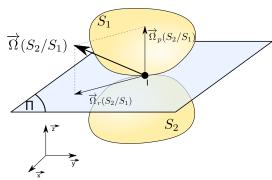
3 Vitesse de roulement / Vitesse de pivotement

Définition 2: Vitesse de roulement / Vitesse de pivotement

Soit $\overrightarrow{\Omega_{(S_2/S_1)}}$ le vecteur vitesse de rotation de S_2 par rapport à S_1 . On peut décomposer $\Omega_{(S_2/S_1)}$ en la somme de deux vecteurs $\overrightarrow{\Omega_{r(S_2/S_1)}}$ et $\overrightarrow{\Omega_{p(S_2/S_1)}}$:

$$\boxed{\overrightarrow{\Omega_{(S_2/S_1)}} = \overrightarrow{\Omega_{r(S_2/S_1)}} + \overrightarrow{\Omega_{p(S_2/S_1)}}}$$
(3)

- $\overrightarrow{\Omega_{r(S_2/S_1)}}$ est le vecteur vitesse de rotation de roulement de S_2 par rapport à S_1 . Il est contenu dans le plan Π .
- $\overline{\Omega_{p_{(S_2/S_1)}}}$ est le vecteur vitesse de rotation **de pivotement** de S_2 par rapport à S_1 . Il est normal au plan Π



Remarque 1:

De manière général, ces deux vecteurs s'obtiennent par :

$$\overrightarrow{\Omega_{p_{(S_2/S_1)}}} =$$

$$\overrightarrow{\Omega_{I(S_2/S_1)}} =$$
(4)

Modélisation des liaisons mécaniques II.

Contact entre les solides

Définition 3 : Système mécanique

- Un système mécanique est composé de plusieurs solides qui sont liés entre eux par des liaisons mécaniques.
- Une liaison mécanique résulte d'un contact entre deux solides.
- Dans la réalité tout contact est surfacique mais suivant les dimensions de certaines zones de contact, on peut idéaliser le contact comme étant parfois ponctuel ou linéaire.
- La nature des surfaces de contact va engendrer des mouvements relatifs autorisés entre les deux solides.

2 Degrés de liberté

Définition 4 : Dégrés de liberté

Les **mouvements relatifs** autorisés entre deux solides liés par une liaison mécanique sont **les degrés de liberté**.

Dans l'espace (3D), on considère 6 degrés de liberté élémentaires (3 translations et 3 rotations) que l'on donne par rapport à un repère $(0, \vec{x}, \vec{y}, \vec{z})$.

- rotations respectivement autour de (O, \vec{x}) , (O, \vec{y}) et (O, \vec{z}) : R_x , R_y et R_z ,
- translations respectivement suivant \overrightarrow{x} , \overrightarrow{y} et \overrightarrow{z} : T_x , T_y et T_z .

Les degrés de liberté autorisés par une liaison dépendent des surfaces de contact entre les solides.

III. Modélisation des liaisons entre solides

1 Liaisons normalisées

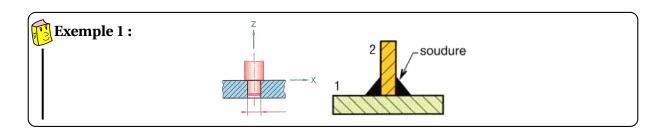
Il existe 11 liaisons usuelles et normalisées entre deux solides. Elles sont définies ci-dessous. Un tableau récapitulatif est donné dans la partie 2. Ces liaisons sont considérées comme parfaites, c'est à dire avec des contacts géométriques parfaits et sans jeu (ce qui est rarement le cas dans la réalité).

Pour la suite de la section, on considère deux solides S_1 et S_2 en liaison.

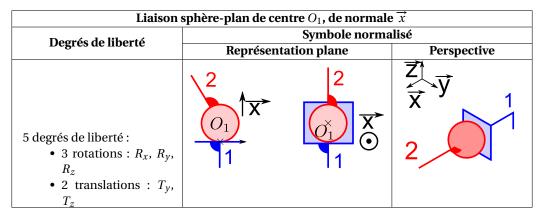
a) La liaison encastrement

Aussi appelée "liaison fixe" ou "liaison complète", cette liaison n'admet aucun degré de liberté. Elle est rarement utilisée.

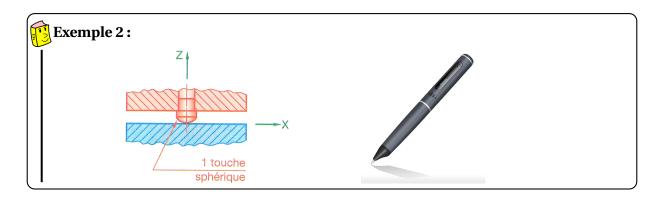
Liaison Encastrement			
Dogués do liborté	Symbole normalisé		
Degrés de liberté	Représentation plane	Perspective	
0 degré de liberté : • 0 rotation • 0 translation	1	\vec{z} \vec{v} \vec{z}	



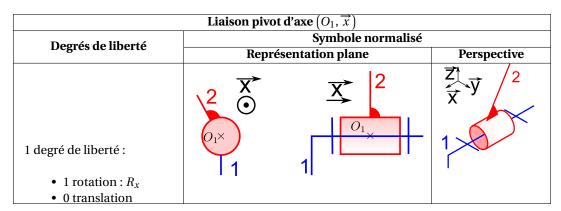
b) La liaison sphère-plan

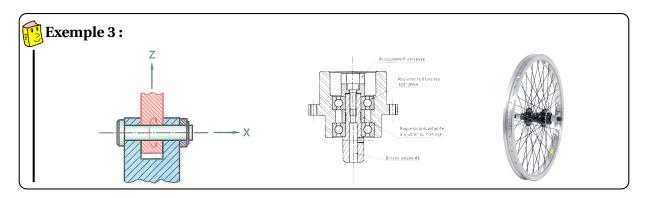


Historiquement appelée "*liaison ponctuelle*", elle constitue **une liaison élémentaire : toute autre liaison peut être considérée comme une combinaison de liaisons sphère-plan.**



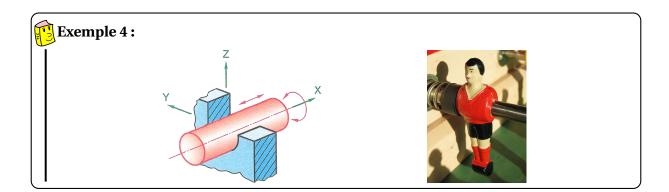
c) La liaison pivot





d) La liaison pivot-glissant

Liaison pivot-glissant d'axe $(O_1, \overrightarrow{x})$			
Degrés de liberté	Symbole normalisé		
Degres de liberte	Repr	Perspective	
2 degrés de liberté : • 1 rotation : R_x • 1 translation : T_x	2 X 0	X O_1	\vec{x} \vec{y} \vec{z}



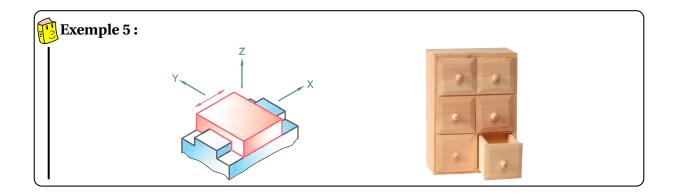
Un arbre de diamètre D dans un alésage de longueur L pourra être modélisé avec une **liaison pivot-glissant si le guidage est long** (c'est à dire si L est suffisamment grand par rapport à D). Généralement, on considère que c'est le cas si :

$$\frac{L}{D} \ge 1,5$$

Dans le cas contraire, elle sera assimilée à une liaison sphère-cylindre.

e) La liaison glissière

Liaison glissière d'axe \overrightarrow{x}			
Degrés de liberté	Symbole normalisé		
Degres de liberte	Repi	Perspective	
1 degré de liberté : • 0 rotation : • 1 translation T_x	X 2 0 1		$\frac{\vec{Z}}{\vec{X}}$ $\frac{\vec{y}}{\vec{Z}}$



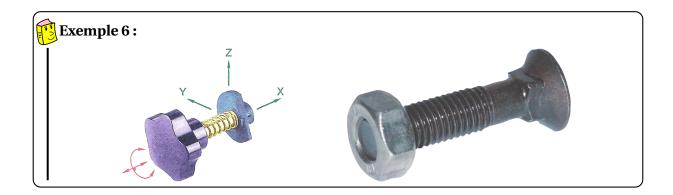
f) La liaison hélicoïdale

Liaison hélicoïdale d'axe $(O_1, \overrightarrow{x})$			
Exemple de désignation	Symbole normalisé		
Exemple de designation	Représentation plane		Perspective
1 rotation R_x + 1 translation T_x couplée	2 X 0 1	1 <u>X</u>	$\frac{\overline{Z}}{\overline{X}}$ $\frac{\overline{Z}}{\overline{X}}$ $\frac{\overline{Z}}{\overline{X}}$

Un seul degré de liberté est considéré. Le mouvement de rotation R_x et celui de translation T_x sont couplés et ne constituent ainsi qu'un seul mouvement indépendant.

Définition 5 : pas de la liaison hélicoïdal

On appelle **le pas de la liaison hélicoïdal** le rapport entre la translation et la rotation : $p = 2\pi \frac{T_x}{R_x}$

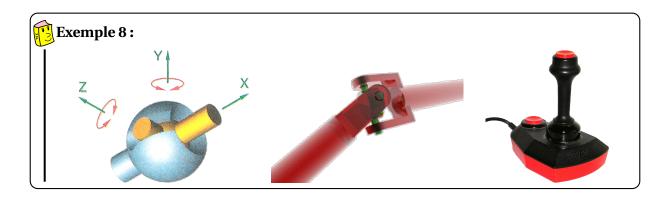


g) La liaison sphérique

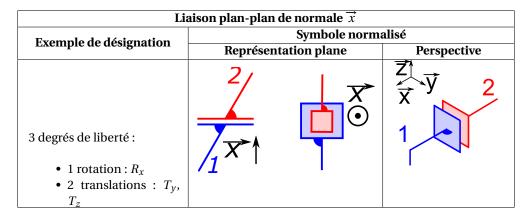
Liaison sphérique de centre O_1			
Exemple de désignation	Symbole normalisé		
Exemple de designation	Représentation plane	Perspective	
3 degrés de liberté : • 3 rotations : R_x , R_y , R_z • 0 translation	2 01	\vec{z} \vec{y} 2	

h) La liaison sphérique à doigt

Liaison sphérique à doigt de centre O_1 et d'axe bloqué \overrightarrow{z}			
Exemple de désignation	Symbole normalisé		
Exemple de designation	Représentation plane	Perspective	
2 degrés de liberté : • 2 rotations : R_x , R_y • 0 translation	$ \begin{array}{c} 2 \\ \hline Z \\ \hline X \end{array} $	Z y 2	

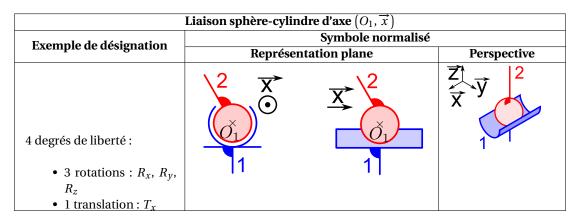


i) La liaison plan-plan



Historiquement, cette liaison s'appelait "liaison appui-plan". Cette dénomination est parfois encore utilisée.

j) La liaison sphère-cylindre

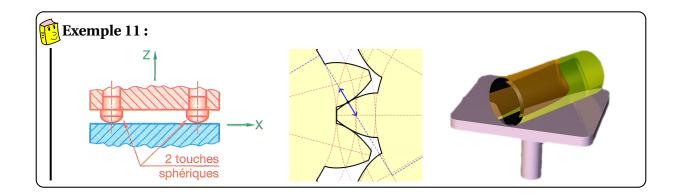


Cette liaison était autrefois appelée "linéaire annulaire"

k) La liaison cylindre-plan

Cette liaison était autrefois appelée "*linéaire-rectiligne*". Malgré son nom, elle se représente par un liaison de forme prismatique. Certains la représentent toutefois par un cylindre posé sur un plan.

Liaison cylindre sur plan d'axe (O_1, \vec{x}) , de normale \vec{z}			
Exemple de désignation	Symbole normalisé		
Exemple de designation	Représentation plane	Perspective	
4 degrés de liberté : • 2 rotations : R_x , R_z • 2 translations : T_x , T_y	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\vec{z} \vec{y} \vec{z}	



2 Tableau des liaisons cinématiques normalisées

A

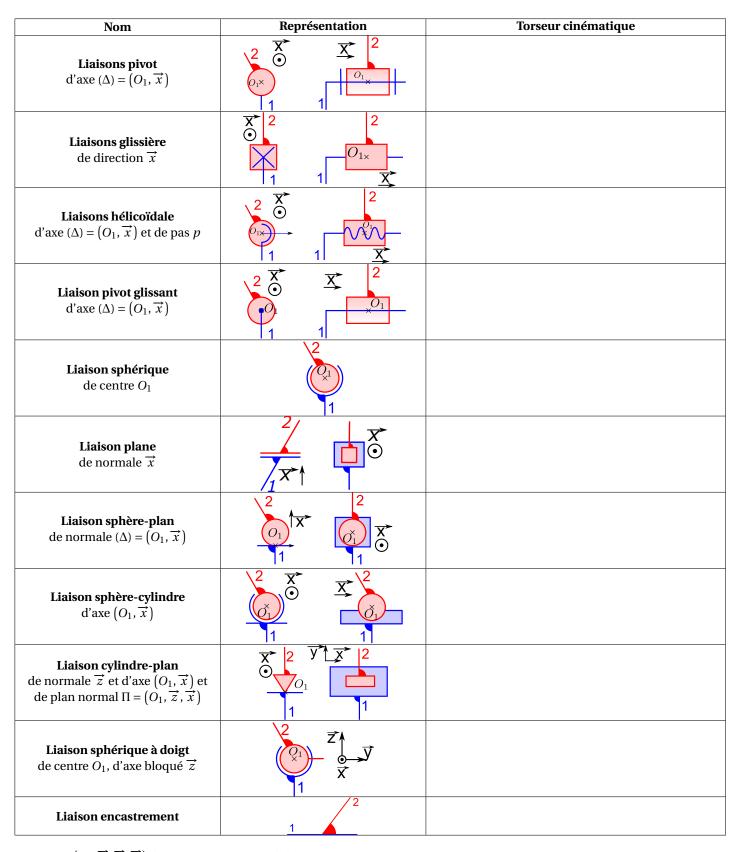
Définition 6: Torseur cinématique du mouvement relatif entre deux solides

On caractérise le mouvement relatif du solide S_2 par rapport au solide S_1 par le torseur cinématique qu'on exprimera en un point P:

$$\left\{ \mathcal{V}_{(S_2/S_1)} \right\} = \bigcap_{O_1} \left\{ \begin{array}{c} \overrightarrow{\Omega_{(S_2/S_1)}} \\ \overrightarrow{V}(O_1 \in S_2/S_1) \end{array} \right\} = \left\{ \begin{array}{cc} p_{21} & u_{21} \\ q_{21} & v_{21} \\ r_{21} & w_{21} \end{array} \right\}_R = \bigcap_{O_1} \left\{ \begin{array}{cc} p_{21} \cdot \overrightarrow{x}_1 + q_{21} \cdot \overrightarrow{y}_1 + r_{21} \overrightarrow{z}_1 \\ u_{21} \cdot \overrightarrow{x}_1 + v_{21} \cdot \overrightarrow{y}_1 + w_{21} \overrightarrow{z}_1 \end{array} \right\}$$

(6)

- $R(O_1, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}) = R_1(O_1, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$, le repère lié à S_1
- p_{21} , q_{21} et r_{21} sont les composantes du vecteur rotation instantané $\Omega_{(S_2/S_1)}$ dans le repère R.
- u_{21} , v_{21} et w_{21} sont les composantes du vecteur vitesse $\overrightarrow{V}(O_1 \in S_2/S_1)$ dans le repère R.



Avec $R(O_1, \vec{x}, \vec{y}, \vec{z})$, le repère associé au solide 1.