Semaine n° 12 : du 2 décembre au 6 décembre

Lundi 2 décembre

- Cours à préparer : Chapitre XII Suites réelles et complexes
 - Partie 4 : Caractérisation séquentielle de la densité; pour $X \subset \mathbb{R}$, existence d'une suite de limite $\sup_{\overline{\mathbb{R}}} X$.
 - Partie 5.1 : Suites arithmétiques.
 - Partie 5.2 : Suites géométriques.
 - Partie 5.3: Suites arithmético-géométriques.
- Exercices à rendre en fin de TD (liste non exhaustive)
 - Feuille d'exercices nº 12 : exercices 2, 3, 5, 6, 7, 8, 9.

Mardi 3 décembre

- Cours à préparer : Chapitre XII Suites réelles et complexes
 - Partie 5.4 : Suites récurrentes linéaires d'ordre deux : cas complexe, cas réel.
 - Partie 6 : Étude de suites définies par une relation de récurrence d'ordre 1.
- Exercices à corriger en classe
 - Feuille d'exercices n° 12 : exercice 3.

Jeudi 5 décembre

- Cours à préparer : Chapitre XII Suites réelles et complexes
 - Partie 6 : Étude de suites définies par une relation de récurrence d'ordre 1.
 - Partie 7: Suites à valeurs complexes.
- Exercices à corriger en classe
 - Feuille d'exercices nº 12 : exercices 1, 4.

Vendredi 6 décembre

- Cours à préparer : Chapitre XII Suites réelles et complexes
 - Partie 8 : Quelques séries numériques.

Échauffements

Mardi 3 décembre

• 1. Montrer que pout tout $t \in \left[0, \frac{2\pi}{3}\right], \frac{1}{2 + \cos t} = 2 \times \frac{2\cos^2\left(\frac{t}{2}\right)}{3 + \tan^2\left(\frac{t}{2}\right)}$

2. Calculer $I = \int_0^{\frac{2\pi}{3}} \frac{1}{2 + \cos t} dt$.

• Cocher toutes les assertions vraies : Soit $A \subset \mathbb{R}$.

 \square A a un sup dans \mathbb{R} .

 \square si A a un max, elle a un sup.

 \square A a un sup dans $\bar{\mathbb{R}}$.

 \square si A a un sup, elle a un max.

Jeudi 5 décembre

• Soit $n \in \mathbb{N}^*$, résoudre l'équation $z^n + 1 = 0$ d'inconnue $z \in \mathbb{C}$

• Cocher toutes les assertions vraies :

 \square Une suite strictement croissante tend vers $+\infty$;

 \square Une suite strictement croissante et minorée par 0 tend vers $+\infty$;

 \square Une suite d'entiers strictement croissante tend vers $+\infty$;

 \square Une suite d'entiers strictement croissante et minorée par 0 tend vers $+\infty$;

 \square Une suite majorée et strictement croissante tend vers $+\infty$;

 \square Une suite non majorée et strictement croissante tend vers $+\infty$.

Vendredi 6 décembre

• Calculer $\sum_{2 \leqslant i \leqslant j \leqslant 8} i + j$.

• Cocher toutes les assertions vraies : Soit f une fonction définie sur $\mathbb R$ à valeurs dans $\mathbb R$. Soit $(x_n)_{n\in\mathbb{N}^*}$ une suite de réels.

 \square Si f est strictement croissante sur \mathbb{R} , alors $\exists! x \in \mathbb{R}, f(x) = 0$.

 \square Si f est strictement croissante sur \mathbb{R} et $1 \in]f(0), f(1)[$, alors $\exists ! x \in \mathbb{R}, f(x) = 1$.

 \square Si f est strictement croissante sur \mathbb{R} , et $\forall n \in \mathbb{N}^*, f(x_n) < f\left(\frac{1}{n}\right)$ alors $\forall n \in \mathbb{N}^*, x_n < \frac{1}{n}$.

 \square Si f est dérivable sur \mathbb{R} et f' > 0 et 0 a un antécédent par f, alors $\exists ! x, f(x) = 0$.