QUELQUES CALCULS D'INTÉGRALES

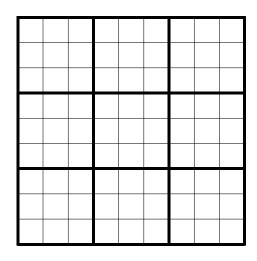
Remplacer les lettres de la grille par leur valeur (un entier entre 1 et 9) dans les expressions suivantes, puis compléter le sudoku.

On pourra utiliser la grille de droite pour reporter ses réponses.

- $\int_{-1}^{2} (1 |x 1|)^4 dx = \frac{a}{p}$ avec $\frac{a}{p}$ irréductible.
- $\int_{1}^{4} \frac{x^3 + 2x^2 + 4x}{x^2} \, \mathrm{d}x = b \ln d + \frac{27}{d}.$
- $\bullet \int_0^{\frac{\pi}{2}} x \sin x \, \mathrm{d}x = c.$
- $\int_{0}^{6} |x^2 9| \, \mathrm{d}x = 6e$.
- $\int_0^1 (t+1)(t^2+2t-1) dt = \frac{f}{g}$ avec $\frac{f}{g}$ irréductible.
- $\int_0^2 \frac{6}{\sqrt{4x+1}} dx = h$; on pourra utiliser le changement de variable $t = \sqrt{4x+1}$.
- $\int_{\frac{1}{2}}^{1} (2x+1) \ln(2x) dx = \ln k \frac{i}{j}$ avec $\frac{i}{j}$ irréductible.
- $\int_0^1 \frac{x}{\sqrt{x+1}} dx = \frac{l-\sqrt{r}}{m}$; on utilisera le changement de variable $t = \sqrt{x+1}$.
- $\bullet \int_{-\frac{\pi}{6}}^{\frac{5\pi}{6}} |\sin x| \, \mathrm{d}x = n$
- $\bullet \int_0^{\frac{\pi}{6}} \sin(4x)\cos(2x) dx = \frac{q}{hk}.$

	a	b	c					d
		e	f	g			h	
	i						j	k
						1		m
		n	О	p	q	r		
\mathbf{s}		t						
u	V						W	
	X			У	Z	A		
В					С	D	Е	

- $\bullet \int_0^{\frac{\pi}{4}} 6\tan x \, \mathrm{d}x = \ln s.$
- $t = 2(I+1)^2$ avec $I = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} \frac{1}{\cos^2 x} dx$.
- u est le logarithme népérien de la plus grande des solutions de l'équation $\int_{a^2}^{x} \frac{1}{t} (2 \ln t 3) dt = 0$.
- $\int_{1}^{2} \frac{2}{(3u-1)^2} du = \frac{v}{A}$ avec $\frac{v}{A}$ irréductible.
- $\bullet \int_0^{\frac{\pi}{4}} \cos^4 x \, \mathrm{d}x = \frac{3\pi}{32} + \frac{1}{w}.$
- $\bullet \int_{-5}^{5} |x^2 + 3x 4| \, \mathrm{d}x = B^2 + 4.$
- $\bullet \int_{-3}^{0} \frac{1}{2x-1} \, \mathrm{d}x = -\frac{\ln D}{E}$
- $\int_{1}^{2} (t^2 + t \frac{1}{t}) dt = \frac{23}{x} \frac{1}{2} \ln C$.
- $\int_{-3}^{0} |x^2 x 2| \, \mathrm{d}x = y + \frac{p}{h}$.
- z est la moitié de l'exponentielle de la plus grande des solutions de l'équation : $\int_{0}^{x} e^{t}(2e^{t}-3) dt = 0$.



Solution

4	3	8	1	7	6	9	5	2
5	2	9	3	4	8	1	6	7
6	7	1	5	2	9	3	8	4
1	5	7	8	6	2	4	9	3
3	9	2	4	5	7	8	1	6
8	4	6	9	1	3	2	7	5
2	1	3	7	8	5	6	4	9
7	6	4	2	9	1	5	3	8
9	8	5	6	3	4	7	2	1