Devoir à la maison n° 15

À rendre le 18 mars

Soit E un \mathbb{K} - espace vectoriel de dimension finie $n \in \mathbb{N}^*$.

On se donne A et B deux sous-espaces vectoriels de E et on se pose le problème suivant :

À quelle(s) condition(s) existe-t-il un sous-espace vectoriel C tel que $A+B=A\oplus C=B\oplus C$?

1) Dans cette question on suppose que le sous-espace vectoriel C existe.

Montrer que $\dim A = \dim B$ et déterminer $\dim C$.

Dans la suite de notre étude, nous allons supposer $\dim A = \dim B$ et montrer que le sous-espace vectoriel C existe.

- 2) On étudie pour commencer le cas où dim $A = \dim B = n 1$.
 - a) Justifier l'existence de vecteurs $u \in A$ et $v \in B$ tels que $u \notin B$ et $v \notin A$.
 - **b)** Établir que $w = u + v \notin A \cup B$ et que $w \neq 0$.
 - c) Observer que C = Vect(w) est solution du problème posé.
- 3) On revient au cas général et on suppose seulement dim $A = \dim B$.
 - a) Résoudre le problème posé lorsque A = B.

Dans la suite, on suppose $A \neq B$.

- b) Justifier qu'il existe un sous-espace vectoriel A' tel que $(A \cap B) \oplus A' = A$. De manière symétrique, on introduit B' sous-espace vectoriel tel que $(A \cap B) \oplus B' = B$.
- c) Montrer que $A' \cap B' = \{0_E\}$ et dim $A' = \dim B' \in \mathbb{N}^*$.

Dans la suite, on pose $p = \dim A' = \dim B'$.

- d) Justifier l'existence de bases $\mathscr{B} = (e_1, \ldots, e_p)$ et $\mathscr{C} = (f_1, \ldots, f_p)$ aux sous-espaces vectoriels A' et B'.
- 4) On reprend les objets introduits ci-dessus afin de construire un sous-espace vectoriel C solution.

On forme $\mathcal{D} = (g_1, \dots, g_p)$ en posant, pour tout $i \in \{1, \dots, p\}, g_i = e_i + f_i$.

- a) Montrer que la famille \mathscr{D} est libre.
- **b)** On pose $C = \text{Vect}(g_1, \dots, g_p)$. Déterminer dim C.
- c) Montrer que $A \cap C = \{0_E\}$.
- d) Conclure que $A + B = A \oplus C = B \oplus C$.

— FIN —