Devoir à la maison n° 5

À rendre le 5 novembre

On note \mathscr{E} l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ vérifiant :

- f est continue;
- $\forall x, y \in \mathbb{R}, f(xy) = xf(y) + yf(x).$
- 1) Soit $f: \mathbb{R} \to \mathbb{R}$ un élément de \mathscr{E} .
 - a) Déterminer f(0) et f(1).
 - **b)** En déduire que f(-1) = 0.
 - c) Montrer que f est impaire.
- 2) Soit $f: \mathbb{R} \to \mathbb{R}$ un élément de \mathscr{E} . On suppose dans cette partie uniquement que f est dérivable sur \mathbb{R}_+^* .
 - a) Démontrer que

$$\forall x \in \mathbb{R}_+^*, \ xf'(x) - f(x) = f'(1)x.$$

b) Soit $k \in \mathbb{R}$, résoudre sur \mathbb{R}_+^* l'équation différentielle

$$xy' - y = kx. (1)$$

- c) En déduire la valeur de f(x) pour tout $x \in \mathbb{R}$.
- d) En déduire que, pour tout $k \in \mathbb{R}$, il existe une unique $f : \mathbb{R} \to \mathbb{R}$ élément de \mathscr{E} , dérivable sur \mathbb{R}_+^* et vérifiant f'(1) = k.
- 3) Soit $f_1: \mathbb{R} \to \mathbb{R}$ l'unique élément de \mathscr{E} dérivable sur \mathbb{R}_+^* et telle que f'(1) = 1.
 - a) La fonction f_1 est-elle dérivable en 0? (on étudiera la limite en 0^+ du taux d'accroissement de f_1 en 0.)
 - b) Étudier les variations de f_1 .
 - c) Donner l'allure du graphe de f_1 (unité de longueur : 4 centimètres). On fera notamment attention au comportement de f_1 au voisinage de 0 et l'on tracera les tangentes remarquables à sa courbe.
- 4) Soit $f: \mathbb{R} \to \mathbb{R}$ un élément de \mathscr{E} , que l'on suppose juste continue. Soit F l'unique primitive de f s'annulant en 0.
 - a) Montrer que

$$\forall x, y \in \mathbb{R}, \ F(xy) = x^2 F(y) + \frac{xy^2}{2} f(x).$$

b) En déduire que f est dérivable sur \mathbb{R}_+^* et en déduire \mathscr{E} .

— FIN —